升力风扇的效率降低了百分之三十以上, 导致平台的机动性能大幅度降低, 甚至无法在海拔高度超过四千五百米的地区使用。

当然,这不是最严重的问题,毕竟海拔在四千五百米以上的战场少之又少。

最突出的问题,还是在防护上,即暴露在外的两台升力风扇很容易被摧毁,而只要有一台升力风扇出问题,平台就将丧失机动能力,而在地面行走的时候,升力风扇将成为巨大的累赘。如果在作战的时候遇到这样的问题,等于降低了平台的战斗力,或者得让乘员冒着炮火到车外卸下升力风扇。

虽然当时北方重工提出了解决方案,比如可以采用自卸系统,即在不使用的时候,自动抛弃升力风扇,但是这仍然让陆军非常不满,因为外置式升力风扇非常昂贵,别说在战场上抛弃,能否大量采购都是个问题。

在北方重工致力于外置式升力风扇的时候,南方机械把重点放在了内置式涡轮升力发动机上,即在平台内部安装大推力涡轮风扇发动机,降低升力系统的总质量,使平台获得有限的低空飞行能力。

事实上,这个方案更加不合陆军的胃口,因为这意味着要为平台提供燃料。

显然,在陆军全面向电动化时代迈进的时候,涡轮风扇发动机根本不符合时代要求。

从发展前进上看,最有希望的仍然是衡泰集团提出的方案,即为地面平台配备内热式动力系统。

按照衡泰集团提交的方案,内热式动力系统将集升力与行走系统与一体,而且统一由燃料电池供电,只是采用两种不同的动力传输装置。在需要低空飞行的时候,动力将主要输出到升力系统上,而在地面行走的时候,则主要输出到履带系统上,从而避免采用两套行走机构,最大限度的降低系统质量。

问题是,该方案的研制难度也最大。

要知道,到了二零五零年,内热式动力系统的推重比还不到三。如果以纯升力模式来使地面战平台获得低空飞行能力,仅动力系统就要占到平台总质量的百分之四十,而这根本不可能实现。在一套成熟的、可用的地面战平台上,动力系统占的比重不会超过百分之十,最好能控制在百分之五以内。如果算上行走系统、能源系统等,则应该尽可能的控制在百分之二十以内。只有达到这个要求,地面战平台才能配备足够的装甲、足够强的火力,也才具备作战能力。

如此一来,内热式动力系统的推重比至少要达到二十,才能满足需要。

显然,这是一个任重道远的艰巨任务。

拿涡轮发动机来说,推重比从三提高到二十,花了足足七十年。就算内热式动力系统的发展前景更乐观,没有二十年也很难办到。

问题是,陆军等不了二十年。

正是如此,在二零五零年之前,陆军把重点放在了基础研究之上,仅以合同方式委托北方重工改进外置式升力系统。

以当时的情况来看,如果北方重工能把外置式升力系统的成本降下来,而衡泰集团能够及时开发出第